

The macroeconomic consequences of COVID-19

Annual International Journal of Central Banking Research Conference 9-10 August 2021

Humans against Virus or Humans against Humans? A Game Theory Approach to a Pandemic by Santiago Forero-Alvarado, Nicolas Moreno-Arias and Juan Ospina-Tejeiro

> Discussion by: Fabrizio Perri Minneapolis Fed

Motivation and contribution

- Analyze the impact of private info about health status on health and economic outcomes in a pandemic
- Study individual behavior in one shot repeated interaction games with complete and incomplete info

Quick Summary of Findings

• Info about health status major determinant of econ-epi outcomes!

• With perfect information no lockdown necessary, without it lockdown beneficial!

Discussion Outline

- Why is information about health status so important?
- Private info and externality
- Heterogeneity and limits to the power of information
- Green passes
- Concluding thoughts and advice

Information about health status: static effect

- Consider the beginning of a pandemic when few people are infected
- Production is organized 2 persons teams
- Complete information: large majority of teams healthy \rightarrow can produce at full capacity \rightarrow minimal economic disruption

Information about health status: static effect

- Consider the beginning of a pandemic when few people are infected
- Production is organized 2 persons teams
- Complete information: large majority of teams healthy \rightarrow can produce at full capacity \rightarrow minimal economic disruption
- Incomplete information: every team faces possibility of having an infectious member \rightarrow all reduce production to reduce risk of infection and death (large cost) \rightarrow diffused and larger economic disruption

Information about health status: dynamic effect

• Complete information: teams with infectious member dramatically cut production to reduce risk of transmission \rightarrow limited transmission of disease \rightarrow slow growth of epidemics

Information about health status: dynamic effect

- Complete information: teams with infectious member dramatically cut production to reduce risk of transmission \rightarrow limited transmission of disease \rightarrow slow growth of epidemics
- Incomplete information: all teams only partially reduce activity \rightarrow more transmission of disease \rightarrow faster growth of epidemics

Information about health status: summary

- Information allow optimal labor choice conditional on health status of team members
 - reduces static economic damage (healthy teams can operate at full capacity)
 - reduces dynamic spreading of pandemics (teams with sick members mostly shut down)

Information about health status: summary

- Information allow optimal labor choice conditional on health status of team members
 - reduces static economic damage (healthy teams can operate at full capacity)
 - reduces dynamic spreading of pandemics (teams with sick members mostly shut down)
- More information is better, however informational constraints are primitives!
- Does the lack of information increases the gap between competitive equilibrium and constrained efficient allocation?

- Even with complete information, competitive equilibrium is inefficient
- Consider *I*,*S* couple: marginal increase in *I* work has no health cost for *I* but positive cost for *S* (not internalized by *i*): private net benefit > social net benefit

- Even with complete information, competitive equilibrium is inefficient
- Consider *I*,*S* couple: marginal increase in *I* work has no health cost for *I* but positive cost for *S* (not internalized by *i*): private net benefit > social net benefit
- Does private information increase the externality (and inefficiency)?

Consider labor choice of infected member i in team i=I, j=S Equilibrium Planner

• Obj: $u(wn_i, n_i)$ $u(wn_i, n_i) - \pi n_i n_j \Delta$ • FOC: $u_c = u_n$ $u_c = u_n + \underbrace{\pi n_j \Delta}_{\text{External cost of } n_i}$

- Obj: $u(wn_i, n_i)$ $u(wn_i, n_i) \pi n_i n_j \Delta$

FOC:
$$u_c = u_n$$
 $u_c = u_n + \underbrace{\pi n_j \Delta}_{\text{External const}}$

External cost of n_i

- Complete information: *j* knows *i* is infected, reduces *n_j*, minimizes externality
- Incomplete information: j does not know partner type, exerts average effort, $n_j^{PI}>n_j^{CI},$ externality larger

- Private information of health status, by disabling private self protection of susceptible individuals, increases externality and calls for more stringent lockdowns graph
- Lockdown necessary but still far from a complete info benchmark graph

- Private information of health status, by disabling private self protection of susceptible individuals, increases externality and calls for more stringent lockdowns graph
- Lockdown necessary but still far from a complete info benchmark graph
- Recommendation: stress this point and relate the paper to the current discussion on lockdowns v/s *laissez faire* (Krueger, Uhlig and Xie, 2021) and behavioral responses

 Team structure emphasizes the role of private info to assess economic/health consequences of labor choices (≠ from aggregate models as in Eichenbaum et al. 2020)

- Team structure emphasizes the role of private info to assess economic/health consequences of labor choices (≠ from aggregate models as in Eichenbaum et al. 2020)
 - External effects only in infection not in production

 $wn_1 + wn_2 - \Delta \pi n_1 n_2$

- Team structure emphasizes the role of private info to assess economic/health consequences of labor choices (≠ from aggregate models as in Eichenbaum et al. 2020)
 - External effects only in infection not in production

$$wn_1 + wn_2 - \Delta \pi n_1 n_2$$

An alternative specification

$$An_1n_2 - \Delta \pi n_1n_2$$

 In this case labor choice has also positive production externalities (less info might be desirable)

- Team structure emphasizes the role of private info to assess economic/health consequences of labor choices (≠ from aggregate models as in Eichenbaum et al. 2020)
 - External effects only in infection not in production

$$wn_1 + wn_2 - \Delta \pi n_1 n_2$$

An alternative specification

$$An_1n_2 - \Delta \pi n_1n_2$$

- In this case labor choice has also positive production externalities (less info might be desirable)
- Focus on two persons team, however economic activity organized in more complex forms or networks (Azzimonti et al., 2020) where some individuals can have many contacts
- Health externalities of labor choices might be much larger, and private info more costly

Green passes

• Currently hot debate on Green passes, i.e. require proof of vaccination to allow people to engage in economic activities (work, school, public transportation, dine out, sports events)

Green passes

- Currently hot debate on Green passes, i.e. require proof of vaccination to allow people to engage in economic activities (work, school, public transportation, dine out, sports events)
- Framework of the paper ideal to evaluate impact of Green Passes
- Vaccination is a (noisy) signal of health status, and requiring proof of vaccination to be part of a team is a way of increasing information available to team members
- A simple exercise: assume that a fixed fraction is vaccinated and evaluate outcomes with and without GP
- Stress the informational and not just health value of vaccines!

Heterogeneity and limits to information

• Information crucial in containment because susceptible individuals know when at risk, and limit their labor supply to lower their infection prob.

Heterogeneity and limits to information

- Information crucial in containment because susceptible individuals know when at risk, and limit their labor supply to lower their infection prob.
- Many workers might not limit labor supply even when they know they are teamed up with an infectious person
 - Because they are poor (high marginal utility of consumption)
 - Because they are young (low risk of serious health consequences)
- In a world with heterogeneity even perfect information might not be enough to achieve efficiency

Final thoughts

- Fun and creative paper!
- Develop a clear and useful framework to assess value of information in a pandemic

Final thoughts

- Fun and creative paper!
- Develop a clear and useful framework to assess value of information in a pandemic
- Marketing advice: the fact that information is valuable not exactly a surprise (see early massive efforts on testing)
- Also there are technological limits on how much information can be shared (asymptomatic cases hard to detect)
- I found much more interesting the interaction between private info and externalities, as it really contributes to the debate on the necessity of lockdowns!
- Also ideal framework to study effects of currently hotly debated information based policies like Green Passes

Optimal lockdowns

- With complete info no lockdown necessary (self protection basically eliminates externality)
- With private info, optimal to restrict activity with taxes exceeding 80%

Effect of lockdowns

- Lockdowns cause a drastic reduction of economic activity (relative to *laissez-faire*)..
- yet they only mitigate the epidemic outcomes, necessary but blunt..