### Inequality and Macroeconomics: Facts and Theories

#### Lecture 4. Neokeynesian macro models of inequality: a tractable example

Fabrizio Perri Minneapolis FED and CEPR




#### Overview

- ▷ Objective: highlight powerful interaction between individual risk and macro outcomes
- ▶ Context: simple NK model with a tractable modelling of unemployment risk

### Sunspot-driven fluctuations

- Rise in expected unemployment
  - $\rightarrow$  consumers reduce demand
  - $\rightarrow$  firms reduce hiring
  - → higher unemployment
- ▶ For a wave of self-fulfilling pessimism to get started need high sensitivity of demand to expected unemployment
- ▶ High wealth:
  - → demand less sensitive to expectations (weak precautionary motive)
  - ightarrow no sunspot-driven fluctuations
- ▶ Low wealth:
  - → demand more sensitive to expectations (strong precautionary motive)
  - $\rightarrow$  sunspot-driven fluctuations

### Wealth & GDP Volatility



Note: Standard deviations of GDP growth are computed over 40-quarter rolling windows. Observations for net worth are averages over the same windows.

#### Outline

- 1 A tractable model of confidence driven recessions
- 2 Micro evidence on the link between wealth and precautionary motive

### Simple dynamic monetary model

#### Key ingredients:

- 1 Imperfect unemployment insurance => precautionary motive for households => expected unemployment affects demand
- 2 Fixed nominal wage => demand affects unemployment
- 3 Central bank can offset weak demand by cutting nominal rate, except at ZLB

### Agents

- Mass 1 of identical firms
- Mass 1 of identical households
  - ▶ Each household contains mass 1 of potential workers
- Monetary authority

# Representative firm

Perfectly competitive, produces consumption good using indivisible labor

$$y_t = n_t^{\alpha}$$

where *n* is mass of workers hired and  $\alpha$  < 1 (decreasing returns) Static profit maximization:

$$\pi_t = \max_{n \geq 0} \left\{ p_t y_t - w_t n_t \right\}$$

where  $p_t$  is price of cons. relative to money,  $w_t$  grows at constant rate  $\gamma_w$ 

FOC: 
$$\frac{w_t}{p_t} = \alpha n_t^{\alpha - 1}$$

In equilibrium.

$$u_t = 1 - n_t$$

$$\frac{1}{p_t} = \alpha n_t^{\alpha}$$
 equilibrium,

 $u_t = 1 - \left(\frac{\alpha p_t}{w_t}\right)^{\frac{1}{1-\alpha}}$ 

#### Households

- ▶ Infinitely-lived, enjoy two goods:
  - 1 consumption, produced by firms
  - 2 housing, aggregate endowment equal to 1
- Can save in housing and in govt. bonds (zero net supply)
- Unemployment risk + imperfect unemployment insurance within period
  - => tractable model of precautionary motive

### Timing:

- All household members look for jobs
- ho If labor demand less than supply  $(n_t < 1)$  jobs randomly rationed
- ▶ Within period, employed cannot transfer wages to unemployed family members
- ▷ => unemployed rely on savings to finance consumption
  - bonds are perfectly liquid
  - ightharpoonup can only tap fraction  $\psi$  of home equity
- At end of period, household regroups, pools resources, decides on savings for next period

### Household solves

$$\max_{\{c_t^w, c_t^u, h_t, b_t\}} E \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^t \{(1-u_t) \log c_t^w + u_t \log c_t^u + \phi \log h_{t-1}\}$$

s.t. budget constraints

$$\begin{array}{rcl} p_{t}c_{t}^{u} & \leq & \psi p_{t}^{h}h_{t-1} + b_{t-1} \\ p_{t}c_{t}^{w} & \leq & \psi p_{t}^{h}h_{t-1} + b_{t-1} + w_{t} \end{array}$$

$$(1 - u_{t}) p_{t}c_{t}^{w} + u_{t}p_{t}c_{t}^{u} + p_{t}^{h}(h_{t} - h_{t-1}) + \frac{1}{1 + i_{t}}b_{t} \leq (1 - u_{t}) w_{t} + \pi_{t} + b_{t-1}$$

### **FOCs**

#### **Bonds**

$$\frac{1}{c_t^w} \frac{1}{1+i_t} = \frac{1}{1+\rho} E_t \left[ \frac{p_t}{p_{t+1}} \left( \frac{(1-u_{t+1})}{c_{t+1}^w} + \frac{u_{t+1}}{c_{t+1}^u} \right) \right]$$

Extra real dollar tomorrow worth  $\frac{1}{c_{i}^{w}}$  to employed,  $\frac{1}{c_{i}^{u}}$  to unemployed

#### Housing

$$\frac{p_t^h}{p_t c_t^w} = \frac{1}{1+\rho} E_t \left[ \frac{p_{t+1}^h}{p_{t+1}} \left( \frac{(1-u_{t+1})\psi}{c_{t+1}^w} + \frac{u_{t+1}\psi}{c_{t+1}^u} \right) + \frac{\phi}{h_t} \right]$$

Real dollar's worth of housing worth  $\psi$  to unemployed

# Monetary authority

- ▶ Sets nominal rate *i*<sub>t</sub>
- ▶ Follows rule of form

$$i_t = i^{CB}(u_t) = \max\{(1 + \gamma_w)(1 + \rho - \kappa u_t) - 1, 0\}$$

- ho controls how aggressively central bank cuts rates when unemployment goes up
- ightharpoonup Will consider passive ( $\kappa$  small) and aggressive ( $\kappa$  large) policies
- ▶ By changing *i* CB can affect current demand and output through standard IS effect

#### Equilibrium

An equilibrium is a probability distribution over  $\{u_t, n_t, y_t, \pi_t, c_t^w, c_t^u, h_t, b_t\}$  and  $\{i_t, p_t, p_t^h, w_t\}$  that satisfies, at each date t

- 1 Household and firm optimality
- **2** The policy rule  $i_t = i^{CB}(u_t)$
- 3 Market Clearing:

$$(1 - u_t) c_t^w + u_t c_t^u = y_t$$
$$h_t = 1$$
$$b_t = 0$$

### **Steady States**

- ightharpoonup Real variables and interest rate are constant, prices grow at rate  $\gamma_{\it w}$
- ▶ There is always a full employment steady state in which

$$u = 0,$$

$$y = 1,$$

$$1 + i = (1 + \rho)(1 + \gamma_w),$$

$$\frac{p^h}{p} = \frac{\phi}{\rho}.$$

- This is the efficient allocation
- Whether other steady states exist depends on level of household liquid wealth, and monetary policy aggressivity

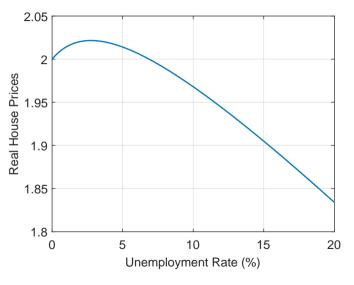
### **Steady State Asset Prices**

- Put aside for a moment the monetary rule
- For any possible steady state unemployment rate *u*, what do optimization and market clearing imply for real house prices and the equilibrium interest rate?
- $\triangleright$  Answer depends on parameters that determine household liquid wealth:  $\psi, \phi, \rho$

# Perfect Risk Sharing Steady States

▷ If  $\psi(\frac{\phi}{a}) > 1$  (liquidity value of housing is high) then risk sharing is perfect is any steady state:

$$1+i = (1+\rho)(1+\gamma_w)$$
$$\frac{p^h}{p} = \frac{\phi}{\rho}(1-u)^{\alpha}$$


# Imperfect Risk Sharing Steady States

- $\vdash$  If  $\psi(\frac{\phi}{a}) < 1$  then risk sharing is imperfect in any steady state
- Real house prices are given by

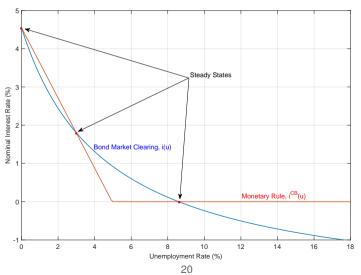
$$\frac{p^{h}}{p} = \underbrace{\frac{\phi}{\rho} (1 - u)^{\alpha}}_{\text{fundamental component}} \times \underbrace{\frac{u + \phi}{\psi \frac{\phi}{\rho} u + \left(1 + \left(\psi \frac{\phi}{\rho} - 1\right) u\right) \phi}}_{\text{liquidity component}}$$

▶ Liquidity component > 1

# Real House Prices and Unemployment



# Imperfect Risk Sharing Steady States


ho If  $\psi(\frac{\phi}{a}) < 1$  then household optimality and market clearing imply

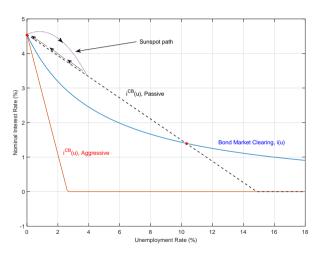
$$i = i(u) = (1 + \rho) (1 + \gamma_w) \left( \frac{u + \phi}{u \left(1 + \frac{\rho}{\psi} - \phi\right) + \phi} \right) - 1$$

- i(u) derived from FOC for bonds, imposing market clearing and steady state house price expression
- $\triangleright 1 + i(0) = (1 + \rho)(1 + \gamma_w)$
- $\triangleright$  i(u) is a decreasing and convex function of u
- > The higher the unemployment the higher the risk, the more households want to save and the lower eq. interest rate has to be to clear bond pkts

# **Steady States**

A steady state is a pair (i, u) satisfying i = i(u) and  $i = i^{CB}(u)$ 

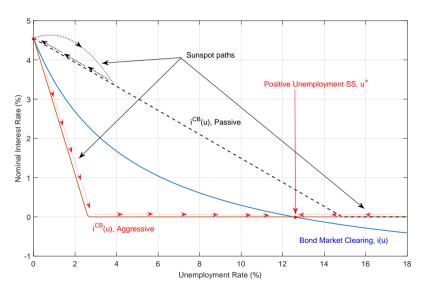



# Characterizing Equilibria

- Different sorts of equilibria are possible depending on:
  - 1 Level of liquid wealth, which determines how fast i(u) declines with u 2 Monetary policy, which determines how fast  $i^{CB}(u)$  declines with u
- $\, \, \vdash \, \, \mathsf{High \ liquid \ wealth:} \, \, \psi > \frac{\rho}{(1+\rho)(1+\gamma_{\mathsf{w}})(1+\phi)-1}$ 
  - ▶ High liquid wealth  $\Rightarrow i(u) > 0$  for all u
- ▶ Aggressive monetary rule:  $\kappa > (1 + \rho) \left( \frac{1 \frac{\psi \phi}{\rho}}{\frac{\psi \phi}{\rho}} \right)$ 
  - ▷ Aggressive rule  $\Rightarrow i^{CB}(u)$  falls faster than i(u) at u = 0

### Dynamics Around Full Employment

- Definition: A steady state is locally stable (unstable) if there do (not) exist perfect foresight paths that converge to it
- Result: If monetary policy is passive (aggressive) then the full employment steady state is locally stable (unstable)
- Implication: An aggressive policy rules out temporary confidence-driven fluctuations
- ▶ Intuition: Aggressive Fed promises to cut rate more than required to support demand ⇒ temporary recession not possible


# Policy Aggressivity and Local Stability



### High Liquidity

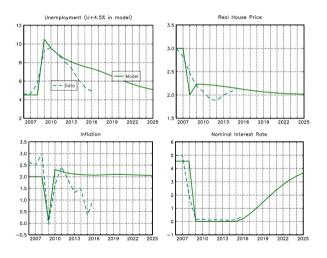
- Result: If liquid wealth is high and policy is aggressive, full employment is only equilibrium
- ▶ Intuition: High liquid wealth => weak precautionary motive => i > 0 in any steady state
- => Aggressive central bank can promise low enough policy rate to rule out positive unemployment steady states
- Aggressive CB can also rule out temporary recessions
- ▶ Implication: Central bank in high liquid wealth environment should be aggressive

# Low Liquidity Case



### Low Liquidity

- Result: Under an aggressive policy, a new steady state emerges with u > 0 and i = 0
- Intuition: Low liquid wealth => poor insurance within household
- ▶ If households expect persistent unemployment, strong precautionary motive and weak demand
- ▶ => A depressed-demand stagnation ZLB steady state emerges
- Result: The depressed steady state is locally stable
- ▶ Intuition: At the ZLB the CB is not responding aggressively enough to fluctuations in unemployment


### Policy Dilemma With Low Liquid Wealth

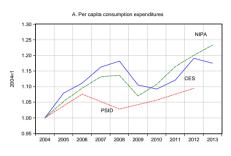
- Low wealth opens the door to rich macroeconomic volatility
- No simple policy fix: bad outcomes possible whether central bank passive or aggressive
  - Aggressive central bank: Confidence shocks can lead to stagnation steady state
  - Passive central bank: Confidence shocks can lead to temporary recessions
- Unemployment insurance can be an effective policy:
  - Weakens impact of expected unemployment on precautionary motive
  - Can eliminate stagnation steady state

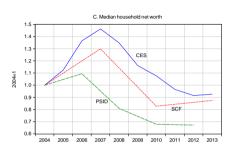
### Interpreting the Great Recession

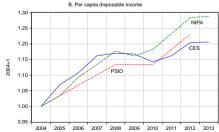
- $\triangleright$  Decline in  $\phi$  reduced  $p^h$  pushing economy into low liquid wealth region
- Not inherently recessionary but creates vulnerability to a confidence shock
- $\triangleright$  Collective loss of confidence (collapse of Lehman?) triggered sunspot shock taking us to u>0
- Gradual recovery in which demand stimulus from expected growth balanced by strong precautionary motive plus rising rates
- ▶ Fed could have tried more aggressive policy, but could not have ruled out a permanent slump

#### Great Recession: model and data




#### Micro Evidence for the Mechanism


- ▶ Key mechanism: Elasticity of expenditures wrt unemployment risk is larger when wealth is low (for precautionary motives)
- Natural test: Did wealth-poor households reduce expenditures more than rich households as unemployment risk rose during the Great Recession?

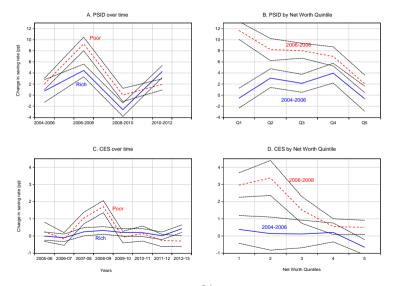

### Micro Survey Data

- ▶ Use both the CEX (higher frequency) and the PSID (longer panel)
- Focus on households of working age
- Divide sample by household wealth (net financial wealth plus home equity) relative to avg. expenditure
- ▶ Compare panel change in saving to income ratio for the high v/s low wealth groups
- Do we see larger rise in saving rates for the low wealth group at the start of the recession?

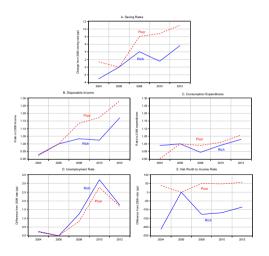
### Surveys versus NIPA








#### Characteristics of Rich versus Poor


|                                       | PSID   |          | CES     |          |
|---------------------------------------|--------|----------|---------|----------|
|                                       | Poor   | Rich     | Poor    | Rich     |
| Sample size                           | 3446   | 2523     | 1915    | 1960     |
| Mean age of head                      | 37.9   | 47.1     | 40.2    | 46.4     |
|                                       | (0.21) | (0.21)   | (0.25)  | (0.24)   |
| Heads with college (%)                | 21.3   | 36.5     | 24.8    | 39.4     |
|                                       | (0.86) | (1.1)    | (1.1)   | (1.2)    |
| Mean household size                   | 2.45   | 2.72     | 2.84    | 2.79     |
|                                       | (0.04) | (0.03)   | (0.04)  | (0.04)   |
| Mean household net worth (current \$) | 11,931 | 619,831  | 11,967  | 338,535  |
|                                       | (879)  | (49,388) | (1,155) | (12,644) |
| Median household net worth            | 5,000  | 265,000  | 1,800   | 187,102  |
|                                       | (476)  | (6,602)  | (294)   | (4,893)  |
| Per capita disposable income          | 15,028 | 28,475   | 18,739  | 30,184   |
|                                       | (256)  | (667)    | (334)   | (593)    |
| Per capita consumption expenditure    | 9,831  | 13,101   | 9,185   | 10,858   |
|                                       | (177)  | (250)    | (232)   | (188)    |
| Consumption rate (%)                  | 65.8   | 46.0     | 49.0    | 36.0     |
|                                       | (0.90) | (0.86)   | (1.18)  | (0.66)   |

Note: Bootstrapped standard errors are in parentheses. 33

# Wealth and Changes in Saving Rates



# Are Other Factors Driving This?



#### Micro Evidence: summary

- During the Great Recession low wealth households reduced their consumption rates significantly more than rich households
- A large (about 1.3% of disposable income) fall in expenditures over the Great Recession can be attributed to increased precautionary motive from these households.

#### Conclusions

- ${}^{\,\triangleright}\,\,\, \text{Model in which macroeconomic outcomes affected by individual risk and insurance possibilities}$
- ▶ Can evaluate effectiveness of policies geared toward stabilization of these fluctuations